Transfer learning in heterogeneous collaborative filtering domains
نویسندگان
چکیده
Article history: Received 6 December 2010 Received in revised form 6 December 2012 Accepted 12 January 2013 Available online 11 February 2013
منابع مشابه
Transfer Learning in Collaborative Filtering for Sparsity Reduction
Data sparsity is a major problem for collaborative filtering (CF) techniques in recommender systems, especially for new users and items. We observe that, while our target data are sparse for CF systems, related and relatively dense auxiliary data may already exist in some other more mature application domains. In this paper, we address the data sparsity problem in a target domain by transferrin...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملTwin Bridge Transfer Learning for Sparse Collaborative Filtering
Collaborative filtering (CF) is widely applied in recommender systems. However, the sparsity issue is still a crucial bottleneck for most existing CF methods. Although target data are extremely sparse for a newly-built CF system, some dense auxiliary data may already exist in othermatured related domains. In this paper,wepropose anovel approach, TwinBridge Transfer Learning (TBT), to address th...
متن کاملTransfer Learning in Collaborative Filtering for Sparsity Reduction Via Feature Tags Learning Model
Recently, many scholars have proposed recommendation models to alleviate the sparsity problem by transferring rating matrix in other domains. But different domains have different rating scales. Simple process for the rating scale does not reflect the real situation. The diversity of rating scales may cause the opposite effect, making the recommendation results more imprecise. In this paper, we ...
متن کاملNon-Linear Cross-Domain Collaborative Filtering via Hyper-Structure Transfer
The Cross Domain Collaborative Filtering (CDCF) exploits the rating matrices from multiple domains to make better recommendations. Existing CDCF methods adopt the sub-structure sharing technique that can only transfer linearly correlated knowledge between domains. In this paper, we propose the notion of Hyper-Structure Transfer (HST) that requires the rating matrices to be explained by the proj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artif. Intell.
دوره 197 شماره
صفحات -
تاریخ انتشار 2013